

8505-093-124-032, 033

Study Title

Toxicity of Soil from the Somers, MT Landfarm to Photobacterium phosphoreum, Lactuca sativa, and Eisenia foetida

> Author David A. Pillard

Studies Completed On July 13, 1993

Performing Laboratory

ENSR Consulting and Engineering
Fort Collins Environmental Toxicology Laboratory
1716 Heath Parkway
Fort Collins, CO 80524

Laboratory Project ID 8505-093-124

October 27, 1993

ENSR Consulting and Engineering 1716 Heath Parkway Fort Collins, CO 80524 (303) 493-8878 (303) 493-0213 (FAX)

Lena Blais Remediation Technology, Inc. 1011 S.W. Klickitat Way Suite 207 Seattle, WA 98134

Dear Lena:

Mark Stromberg requested that I send you a copy of the report on the July toxicity tests performed on soils you collected in June at the Somers, MT landfarm. Individual soil samples were analyzed using Microtox; a composite of all samples was evaluated using lettuce seed germination and earthworm survival.

Please give me a call if you have any questions about these tests.

Sincerely,

David A. Pillard, Ph.D.

Aquatic Ecologist/Toxicologist

DAP/lel

enclosure

File: 1140-020

ENVIRONMENTAL PROTECTION AGENCY

NOV 1 7 1993

MONTANA OFFICE

STATEMENT OF QUALITY ASSURANCE

The test data were reviewed by the Quality Assurance Unit to assure that the study was performed in accordance with the protocol or other appropriate guidelines and standard operating procedures. This report is an accurate reflection of the raw data.

Quality Assurance Unit

(<u>Lument</u> 31, 1493

SUMMARY

Sponsor	Burlington Northern Railroad 9401 Indian Creek Parkway Overland Park, KS 66201
Project Officer	Mark Stromberg (913) 661-7016
Study Director	David A. Pillard, Ph.D. (303) 493-8878
Senior Biomonitoring Technician	Stan W. Capps
Test Facility	ENSR Consulting and Engineering 1716 Heath Parkway Fort Collins, Colorado 80524
Location of Data	Data Records and Storage 328 Link Lane #4 Fort Collins, Colorado 80524
Test Substance	Soil
Test Endpoint(s)	Microtox: EC ₅₀ Lactuca sativa Seed Germination: EC ₅₀ and NOAEC Eisenia foetida Toxicity Test: LC ₅₀ and NOAEC
Test Duration	15 Minutes (Microtox) 5 Days (Seed Germination) 14 Days (Earthworm Survival)
Test Dates	June 16 and 17, 1993 (Microtox) June 16 to June 21, 1993 (Seed Germination) June 29 to July 13, 1993 (Earthworm Survival)
Test Species	Photobacterium phosphoreum (luminescent bacteria) Lactuca sativa (Lettuce, Buttercrunch) Eisenia foetida (Earthworms)
Source of Organisms	Microbics Corporation (Photobacterium phosphoreum) Rocky Mountain Seed Company (Lactuca sativa) ENSR In-House Culture (Eisenia foetida)
Test Concentrations	0 (Control), 0.4, 2.0, 10.0, and 50.0% Soil Extract (Microtox Assays) 0 (Control), 6.25, 12.5, 25, 50 and 100% of the Test Material (Seed Germination and Earthworm Survival)

1.0 INTRODUCTION

Toxicity tests were conducted at ENSR Consulting and Engineering's Fort Collins Environmental Toxicology Laboratory (FCETL) to determine the toxicity of test soils collected at the Burlington Northern Somers, Montana Landfarm, to marine luminescent bacteria (*Photobacterium phosphoreum*) (Microtox), buttercrunch lettuce (*Lactuca sativa*), and earthworms (*Eisenia foetida*). The criteria for effects were decreased bacterial luminescence of *Photobacterium phosphoreum* in the Microtox tests, reduction in germination and/or root length in the lettuce test, and survival in the earthworm test. Microtox (*Photobacterium phosphoreum*) test results are expressed as the median effect concentration (EC_{50}), which is the percent of sample which produces a 50 percent reduction in luminescence at the specified time of exposure. Lettuce test results also are expressed as the EC_{50} (the concentration of material estimated to produce a 50 percent reduction in germination or root elongation in the specified time of exposure) and the NOAEC (No Observable Adverse Effect Concentration). Earthworm test results are expressed as percent survival in the specified time of exposure. The median lethal concentration (EC_{50}), which is the calculated concentration of material which causes 50 percent mortality in the earthworm population at the specified time of exposure, and the NOAEC were also determined.

2.0 MATERIALS AND METHODS

2.1 Test Material

The test material was delivered to the FCETL via Federal Express on June 7, 1993. Five samples consisting of two 1-liter glass jars each, labeled LTF-A, LTF-B, LTF-C, LTF-D, and LTF-E, were designated FCETL sample #4842, #4843, #4844, #4845, and #4846, respectively. The samples were mixed well to assure homogeneity, and tested individually (i.e., five separate tests) using the Microtox methodology. Subsequently, all five samples were composited and homogenized, creating a single test material, for the lettuce and earthworm tests. A chain of custody form accompanied the samples and is presented as Appendix A.

2.2 Microtox Test

2.2.1 Control Water

The control water was Microtox diluent (a 2 percent NaCl solution in purified water) manufactured by Microbics Corporation.

2.2.2 Soil Extract

The soil extract was prepared by placing 25 g of the soil sample in a mason jar with 100 ml Milli-Q water, sealing the jar with a foil-lined cap, and tumbling the mixure for 18 to 22 hours at 40 rpm. The soil/water mixure was then allowed to settle for approximately 30 minutes, after which 15 mls of the extract was drawn off and centrifuged. The salinity of 10 mls of the supernatant was adjusted by adding 0.2 g NaCl. A duplicate sample was prepared and analyzed concurrently.

2.2.3 Test Organisms

The Microtox reagent is a lyophilized strain of marine luminescent bacteria most closely resembling *Photobacterium phosphoreum* in its characteristics. The reagent used in testing was Microbics Corp. Lot #AM018 - expiration 5/94. Prior to use in the test, the reagent was stored in the freezer compartment of a laboratory refrigerator. The reagent was prepared for use in testing by adding 1 ml Microtox Reconstitution Solution to the vial containing the lyophilized reagent. The reconstituted reagent was transferred to a Microtox cuvette and mixed by aspirating and dispensing 20 times with a 500 μ L micropipettor. The reagent was stored in the pre-cool well of the Microtox Analyzer (Model 2055) throughout testing.

2.2.4 Test Methods

The tests were conducted according to Beckman Instruments (1982) guidelines. A quality assurance standard test (using 10 mg/L sodium pentachlorophenol (SPP)) was run with each vial of reagent used in testing. Test chambers were Microtox standard disposable cuvettes manufactured from borosilicate glass. The test concentrations were 6.25, 12.5, 25, and 50 percent for the SPP standard tests, and 0.4, 2.0, 10.0, and 50.0 percent for the soil extract tests with two replicates per treatment group for each of the tests. A control treatment was conducted with each test. The test chambers were held in the incubator wells of the Microtox Analyzer at 15°C throughout testing.

The test chambers were filled with 500 μ L Microtox diluent, and 10 μ L Microtox reagent was added to each test chamber. After a ten minute equilibation period, the test chambers were cycled through the turret assembly of the Microtox Analyzer (which contains a photomultiplier tube) to obtain initial (T_0) light level readings. The test material was then added to the test chambers by transferring 500 μ L of pre-mixed solutions of the soil extract and the control water to the test chambers. Five minutes later, the test chambers were cycled through the turret assembly to obtain T_5 light level readings. Light level readings were obtained once again at time T_{15} (ten minutes after the last readings).

2.2.5 Data Analysis

The EC $_{50}$ values, r^2 values, and confidence intervals were calculated using a Lotus 1-2-3 spreadsheet.

2.3 Buttercrunch Lettuce (Lactuca sativa) Seed Germination Test

2.3.1 Control/Hydration Water

The control/hydration water was dechlorinated city water that was passed through the laboratory's Milli-Q system.

2.3.2 Artificial Soil

The artificial soil used in the study was commercially available, washed silica sand (16-40 mesh). Once seeds were placed on the surface of the sand, and it was hydrated, a layer of silica sand of a larger mesh size (10-20) was placed over the seeds.

2.3.3 Test Organisms

Lactuca sativa seeds were obtained from Rocky Mountain Seed Company, lot #7578. Prior to testing, the seeds were size-graded and passed through a seed blower at the National Seed Storage Laboratory at Colorado State University to remove debris and empty seed hulls. Seeds were stored at 4°C prior to test initiation.

2.3.4 Test Methods

The test was conducted in general accordance with USEPA (1989) guidelines, with some modifications. Those modifications include use of smaller testing chambers, fewer seeds, and a lower volume of hydration liquid. Testing was conducted in 100 x 15 ml Petri dishes containing 50 g of test material appropriately diluted with artificial soil. Each test concentration was

hydrated to 75 percent of its calculated water holding capacity with Milli-Q water. A control, also hydrated with Milli-Q water, was conducted concurrently. At test initiation, ten seeds were randomly distributed to each test chamber and three replicates were tested per treatment concentration. The larger-grain sand was placed over the seeds. The test chambers were placed on trays inside black, plastic bags. The bags were sealed with tape and the trays were placed in an environmental chamber. After 48 hours the trays were transferred to clear bags for the remainder of the test. The test was conducted at 25°C under fluorescent lighting with a photoperiod of 16 hours light and 8 hours dark.

2.3.5 Data Analysis

Percent germination and mean root lengths were determined. The EC_{50} values were determined by the Trimmed Spearman-Karber method. The NOAECs (No Observable Adverse Effect Concentrations) for germination and for root length were determined using analysis of variance followed by Dunnett's test. Normality and homogeneity of variance were first confirmed using Shapiro-Wilk's and Bartlett's test, respectively.

2.4 Earthworm Survival Test

2.4.1 Control/Hydration Water

The control/hydration water was dechlorinated city water that was passed through the laboratory's Milli-Q system.

2.4.2 Artificial Soil

The artificial soil used in the study consisted of (by weight): 10 percent - 2.36 mm screened sphagnum peat, 20 percent - colloidal kaolinite clay, and 70 percent - silica sand (40-140 mesh). Prior to use in the test, the artificial soil was well mixed, and the pH was adjusted using CaCO₃.

2.4.3 Test Organisms

Earthworms (*Eisenia foetida*) were obtained from in-house cultures. Prior to testing, the earthworms were examined to assure all were adults (i.e., possessed a clitellum); and a subsample of ten earthworms was weighed to determine pretesting mean weights.

2.4.4 Test Methods

The test was conducted in general accordance with USEPA (1989) guidelines, with some modifications. Those modifications include fewer organisms per replicate and a greater number of replicates. Testing was conducted in glass mason jars (of sufficient size to provide a loading rate of not less than 40 to 50 g soil per 1 g earthworm tissue) containing 200 g of test material appropriately diluted with artificial soil. Each test concentration was hydrated to 75 percent of its calculated water holding capacity with Milli-Q water. A control, also hydrated with Milli-Q water, was conducted concurrently. At test initiation, five earthworms were randomly distributed to each test chamber and three replicates were tested per treatment concentration. The test chambers were covered with tight-fitting lids with air holes and placed in an environmental chamber. The test was conducted at 22 ± 3°C under continuous fluorescent lighting.

2.4.5 Data Analysis

Percent survival and mean weights of surviving organisms were determined. The 14-day LC₅₀ value was calculated using the probit method. Shapiro-Wilk's and Bartlett's tests showed, respectively, that the data were neither normal, nor were their variances homogeneous. A non-parametric test would normally be run in this instance, to determine significant difference from control performance. However, in this case, non-parametric tests did not indicate representative results, when compared with the data. Accordingly, the NOAEC (No Observable Adverse Effect Concentration) for survival was determined using analysis of variance followed by Dunnett's test.

3.0 RESULTS AND DISCUSSION

3.1 Microtox Test Results

The 5 and 15-minute EC_{50} values, r^2 values, and 95 percent confidence intervals of the soil extract tests are presented in Table 3-1, and the results of the SPP standard reference toxicant tests are presented in Table 3-2. LTF-E soil was the least toxic, with a 15-minute EC_{50} of 59.1 percent. LTF-D soil was the most toxic, with a 15-minute EC_{50} of 10.1 percent. Raw data sheets are presented in Appendix B.

3.2 Buttercrunch Lettuce (Lactuca sativa) Seed Germination Test Results

Seed germination ranged from 10.0 percent in the 100 percent treatment to 86.7 percent in the 12.5 percent treatment (Table 3-3). Consequently, the 5-day EC₅₀ for germination was 30 percent test material (Table 3-4). Germination in the control was 93.3 percent. Mean root length ranged from 16.8 mm in the 100 percent treatment to 28.6 mm in the 6.25 percent treatment. Root length (in each of the treatments where germination was not significantly different than control germination) was not significantly different than control root length ($\alpha = 0.05$). Therefore, based on germination, the NOAEC was 12.5 percent test material. Raw data sheets are presented in Appendix C.

3.3 Earthworm Survival Test Results

Earthworm survival ranged from 100 percent in the 6.25 and 12.5 percent treatments to 0 percent in the 100 percent treatment (Table 3-5). Consequently, the 14-day LC₅₀ was 27.3 percent test material (Table 3-4). Survival in the control was 100 percent. The NOAEC was 12.5 percent test material. Raw data sheets are presented in Appendix D.

3.4 Analytical Chemistry

Prior to shipping the soil samples to ENSR, a sample was composited by Retec and sent to Alden Analytical Laboratories, Inc. Eighteen organic materials were measured. Phenanthrene was present in the highest concentration - 220,000 μ g/kg. Other materials present in high concentrations included fluoranthene (100,000 μ g/kg), acenaphthene (89,000 μ g/kg), fluorene (74,000 μ g/kg), and pyrene (67,000 μ g/kg). A copy of all the data is provided in Appendix E.

TABLE 3-1

Somers Landfarm Soil Samples
Results of Microtox Analyses

Sample ID	ENSR Sample Number	Exposure Period (min)	EC ₅₀ (%)	95% Confidence Intervals	R²
LTF-A	4842	5	27.3	21.0 - 36.2	0.995
	(12384)	15	31.6	19.3 - 56.7	0.980
LTF-B	4843	5	11.6	6.8 - 20.7	0.978
	(12385)	15	13.5	5.6 - 37.0	0.948
LTF-C	4844	5	16.3	13.5 - 19.7	0.997
	(12386)	15	17.2	10.3 - 30.0	0.981
LTF-D	4845	5	9.8	1.6 - 93.2	0.886
	(12387)	15	10.1	1.4 - 129.1	0.859
LTF-E	4846	5	53.0	29.6 - 123.3	0.965
	(12388)	15	59.1	37.9 - 107.0	0.970
LTF-E	4846D	5	57.6	40.5 - 89.2	0.986
(Duplicate)	(12388D)	15	66.2	38.4 - 155.5	0.942

TABLE 3-2

Results of Microtox SPP Reference Toxicant Tests

Date of Analysis	Reading Time (minutes)	EC ₅₀ (mg/L)	Historical Mean (mg/L)	Acceptable Range (mg/L)
06/16/93	5	20.3¹	14.8	10.5 - 19.0
	15	12.0	9.8	6.6 - 12.9
06/17/93	5	18.4	14.8	10.5 - 19.1
	15	10.0	9.8	6.6 - 12.9

 $^{^1}$ The five minute EC₅₀ of the reference toxicant test conducted on June 16, 1993 indicated the test organisms (*Photobacterium phosphoretum*) were slightly less sensitive to the reference toxicant after five minutes of exposure than what has historically been observed; however, the fifteen minute EC₅₀ was within the sensitivity range. The difference between the five minute EC₅₀ observed on June 16th and the historical sensitivity range was not of significant magnitude to suggest especially tolerant test organisms.

TABLE 3-3

Germination and Root Lengths of Lactuca sativa Exposed to Soil from the Somers Landfarm

	Endpoints (N	Mean Values)
Concentration of Test Material (Percent)	Germination (Percent)	Root Lengths (mm)
0 (Control)	93.3	28.9
6.25	76.7	28.6
12.5	86.7	26.2
25	63.31	24.3
50	23.3¹	23.2
100	10.0 ¹	16.8

 $^{^{1}}$ Indicates a significant difference (α = 0.05) from the control, using Dunnett's test.

TABLE 3-4

Median Effective or Lethal Concentration (EC₅₀ or LC₅₀) Values for Lactuca sativa Germination and Eisenia foetida Survival

Exposure Period (hours)	EC ₅₀ or LC ₅₀ (percent test material)	Statistical Method
5 Days (Lactuca sativa)	30	Spearman-Karber
14 Days (Eisenia foetida)	27.3	Probit

TABLE 3-5
Survival of Eisenia foetida Exposed to
Soil from the Somers Landfarm

	Endp	oints
Concentration of Test Material (Percent)	Survival (Percent)	Number Live Organisms
0 (Control)	100	15
6.25	100	15
12.5	100	15
25	46.7¹	7
50	13.3¹	2
100	01	0

 $^{^{1}}$ Indicates a significant difference (α =0.05) from the control, using Dunnett's test.

4.0 LITERATURE CITED

- Beckman Instruments, Inc. 1982. Microtox System Operating Manual. Microbics Operations. Carlsbad, CA.
- USEPA. 1989. Protocols for Short Term Toxicity Screening of Hazardous Waste Sites. EPA/600/3-88/029.

APPENDIX A CHAIN OF CUSTODY FORM

CHAIN OF CUSTODY RECORD

Client/Project Nam	0		/- r Proje	t Locatio	A	JSTODY R	_			_						, .
Client/Project Nam	BN-	Some	Goldobus	ogbook N	30000	S, MT			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70	AN	ALYSE	S		/	
	-020	- 200		ogbook it	··· —				XX	HOL	8,77	/ /	/ /			
Sampleh: (Signatur	e)	Sas	Chain o	Custody	Tape No	•		1	Sylv	XX	July 1		/ /			
Sample No./	Date	Time	Lab Sample	J	Type	of	1	25/	974	Della Se	/		//	_		
LTF-A		4:2c 97	#4842		Samp		\leftarrow	<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\leftarrow	\leftarrow	\leftarrow	_		REMA	
LTF. B	<i>Le</i> /3	4.3501		La	no for	m Soul					 	 	C	bec	led	10m
LTF-C		4: 45 67	4843		-+	*************************************	2			 	 	 	<u> </u>	Day	e n	Jow
LTF-D	1	5:00rd	4844 4845				2				-	 				
LTF-E	1	5 15 PM	1845	_	1						-	-				
	-V	3 .0	4846		V_		2				 	-		******		
							1				 	 		******		
				_			-				 	-				
							1							****		

				-								 				
			· · · · · · · · · · · · · · · · · · ·									 				· · · · · · · · · · · · · · · · · · ·
											ļ					
						-						<u> </u>				
Relinquished by: LSi	anature)				ate 6/4/93	Time 5 m	Recei	ved by	: (Signi	ature)	FER) e	X.	Date		Time
Relinquished by: (Si		T-11-12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			6/4/43 ale/	Time	Recei	ved by	: (Sign	ature)	190/3	3058	45	Date		Time
Relinquished by: (Si	innaturel					Time	<u> </u>									
					ate	Time	Hectein	red for	Labor	atory:	(Signa	ture)		Date 6-7-	23	Time /230
Sample Disposal Me	etnod:			D	isposed o	of by: (Signat	ure)			01				Date		Time
SAMPLE COLLECTO	OR		***************************************	AN	ALYTICA	L LABORAT	ORY						1	دي		
ENS	R Consul	ting & Engir	neering	U	1: + no	X as	ich.							E	4	K
Fort	Collins, C													NIº	11	9 7 5
303-	493-8878								SU	ン				14.	71	310

APPENDIX B MICROTOX TEST DATA

ENVIRONMENTAL RESEARCH & TECHNOLOGY, INC. BOX 2105 1715 HEATH PARKWAY FORT COLLINS COLORADO 90522, 2031 493-8878

DATA PACKAGE FINAL RELEASE FORM

Project	Number	1140 -	020-	200
Client	ReTec	/BN		

1	Chain	of	Custody	Records	Complete.
1.	Chain	0:	CHALORA	VECOTCO	COMP LCCC.

- 2. Sample Log Book "Results Sent" Sign Off Completed.
- 3. Quality Assurance Data Approval Form Completed.
- -. Signature Page Completed.
- 5. Daily Logs Included and Completed.
- 6. Serial Dilution Standards Form Included if Applicable.
- 7. Accuracy Data (Forcified Samples) Included.
- 8. Precision Data Included.
- 9. Sample Disposal Considered.
- 10. Typed Results Checked and Approved.

Checked 3y	Approve By
SB	sk
53	dk
SB	Sk
S C	Sh
5B	dh
NIA	-
ട ്	ek
<i>ട</i> හ	sh
SB	dh
35	dk

Checked	SySusan L. Burnett	Approved By Dankele
Date	6/17/93	Date 6/17/93

JEST: CAT	Z AbooúAYF				
CLIENT:_	RETEC/BN		EET 40: 1140 -	- <i>0a</i> 0	- 200
HALYSI	S PARAMETER(S): MICR	ROTOX			
	:				
AND ROUT RETURN T	EVIEW AND APPROVE/DISAP E THROUGH THE PERSONNEL HIS PACKAGE TO THE INIT WILL BEGIN AGAIN.	LISTED BELOW. IF	SACE AND ACK	OF ANYT	THING PLEASE
נאכניים בס	IN THIS DATA PACKAGE (PLEASE LIST BELCW):		
Initial	Page(1): Paw Data Sh	neet(1); Daily Lo	ogsi 🔌 Soil	Extract	tion(1);
Standar	d Dilutions(1); Cata	Reduction Sheet:	s(\: Charts()	
	ROUTING		SI	GNA TURE	
TITLE	ROUTING	OATE	7bbd0AYF	GNA TURE	OISAPORCYAL (SEE SIDE 2
TITLE	1			GNATURE	
	YAME			GNA TURE	
TITLE	YAME			GNATURE	
TITLE	YAME			GNA TURE	
TITLE	YAME			GNATURE	
TITLE	YAME			GNA TURE	

Q.A. UNIT Pankerse 6/17/93

INITIAL PAGE

SIGNATURE) ()	INITIALS	
Susan I. Burnett	SB		
bean Keefe	Sk		
Ü			
	1		
٠.			
		·	ř
			= .

SUBJECT: CAILY LOS CATE AND SIGN EACH ENTRY
6/7/93 Samples received via Fed Ex Refrigerated @ 4°C upon 50 min (so)
50 HISE PROCES (SB)
Jee receipe.
6/15/93 Started tumbling samples 12384 - 12388D @ 0930. (se)
6/16/93 Stopped tumbling samples @ 0815(s8).
6/16/93 Adjusted salinity of 10ml soil extract with 0.2 g NaCl for
each sample, and performed Microtox assays per
Beckman methods.(sB)
pecinimus messes
Opt of the same

EXTRACTION OF SOIL SAMPLES RETEC/BN Project: 1140 - 020 - 200 MICROTOX Analysis: _ Weight Date Solvent Date ERT No. Sample ID Extracted/ Sampled Extracted Used By (0) 6/15-16/93 H2O 6/3/93 25 LTFA 12384 53 LTFB 12385 LTFC 12386 12387 LTFD 12388 LTFE 13388D LTFE

Comments:

Review By:

EE:	EKMAN	MCROTO	XM DAT	AREDU	CTION S	HEET			TICHE SIL
	SPP Standard						:		
.1.778	ENSR						:		
7-							• • •		
HEPORT	FD RESULTS. TOXIC C CC	N-TOXIC _	"!AX I	· -	-05 C	::CENTR	716°		
	LRAPEC X EC	• • • •	w	51 .	Ú.	_	_		•
K	IONFIDENCE FACTOR +							-	
	SEL CONFIDENCE MITER, AL	5min:		175	===	23 /-			
REVARK	S	15 min :		10.7	_ ~ _	13.3			
!									
<u>i — — </u>									
SAMPLE	DATA: SAMPLE TYPE (EFFLUEN	T. LEACHA	TE. ETC.J.	Standa	ird				
DATE ASS	SAYED: 6 _ 16	<u>_9</u>	3	TIME: _	1351			ű#0	
/ISUAL C	Clear			CORRECT	TION REQUI	RED.	ves:_	ox.	
יושטבני.	CHAIDITY CIECI			SEPARAT	ION REQUIR	RED:	'ES:"	:0.85	
NITIALO	n:	pH AOJ	IUSTED TO:		HTIV				
OSMOTIC.	AOL: HTIW DETEULOA YJJ	S 🗀 01	RY Naci 凶	OTHE	RC				
	DILUTION OF SAMPLE: 1007								
OPERATO	R: <u>50</u>		<u>.</u>	REAGENT	VIAL LOT	10. M-	AM-O	18	
REMARKS	. 10 ul bacteria							×	
-									
	TA	BLE OF OB	SERVED AN	O CALCUL	ATED RESU	ILTS			
BLANK	FINAL ASSAY CONCENTRATION	INITIAL		NAL READ		BLANK R	ATIO CHEC	ĸ	
CUVETTE	SPECIFY UNITS	lob	lgb	1150	1 15	81: A (5)	•		
	O IBLANKI	1_90_	L=7_	65	i	C1: R (5)	•		
C1	O (BLANK)	184	70	157	Ī	ABSORBA	NCE !COLO	RI CORREC	TION DA
	READINGS			•		· -			
	INK RATIOS.		R (5) -	R (15) -	R()-]" - <u> </u>			
0:	A - A tu -		0.845			G			
SAMPLE	FINAL ASSAY CONCENTRATION	INITIAL READING	5-MIN	MAL READ!	4	L	T) EFFEC	13	•
CUVETTE		100)	1(5)	1/1983	11	[(S)	T(15)	[[Let_
82 _	6.25	93	_71_	47		0.107			
æ	6.25	93	70	48		0.122	† – – –		
- = -	12.5	_93	54	31		0.455			
CI	12.5	98	56	34		0.478			
84 -	25.0	_89_	33	16		1.278			
C4	25.0	92	37	-16-		1.507			
95	50.0	84	13	5.6		4.459	i		
cs :	50.0	86 1	-11-1	5.0		5.605			
				<u> </u>		0,000			

1.397940 2.174802 1.03

1.397940 2.174802 1.03

1.698970 2.506720 1.33

1.698970 2.506720 1.33

FILE IS ST061693 MICROTOX CALCULATION SPREADSHEET DATA FOR 5 AND 15 MINUTES

DATE OF ANALYSIS: JUNE 16, 1993 ENSR LAB NUMBER: SPP STANDARD

ENSR LAB		SPP STANI NONE	DARD				
5-MINUTE 15-MINUTE		EC50 20.3 12.0	LOWER CI 17.5 10.7	UPPER CI 23.6 13.3	R2 0.995 0.996		
BLANK REA	DINGS T=0	T=5	T=15				
B1 C1	90 84	77 70	65 57	•			
	R (mean) R1 R2 DIFF	0.8444 0.8556 0.8333 0.0222	0.7004 0.7222 0.6786 0.0437				
SAMPLE RE	ADINGS CONC	T=0	T=5	T=15		PERCENT L T=5	T=15
B2 C2 B3 C3 B4 C4	6.25 6.25 12.5 12.5 25	93 93 98 89 92	71 70 54 56 33	47 48 31 34 16		9.6 10.9 31.2 32.3 56.1	27.8 26.3 52.4 50.5 74.3
B5 C5	50 50	84 86	13	16 5.6 5		60.1 81.7 84.9	7 5. 2 90.5 91.7
GAMMA CAL	CULATIONS CONC	T=5	T=15				
B2 C2 B3 C3 B4 C4	6.25 6.25 12.5 12.5 25	0.106 0.122 0.454 0.478 1.277 1.506	0.386 0.357 1.101 1.019 2.896	•			
B5 C5	50 50	4.456 5.602	3.027 9.506 11.047	2			
LOG TRANSI CUVETTE	CONC	S T=5	T=15		F	REDICTED CONC	T=5
B2 C2 B3 C3 B4	0.796 0.796 1.097 1.097	-0.974 -0.914 -0.343 -0.321 0.106	-0.414 -0.447 0.042 0.008 0.462		0 0 1 1	.795880 1 .096910 1 .096910 1	.510967 0.44 .510967 0.44 .842884 0.74 .842884 0.74 .174802 1.03

0.178

0.649

0.748

1.398

1.699

1.699

C4

B5

C5

0.481

0.978

1.043

	MAN W PP Stand. d		X™ DATA	REDUCTIO	ON Srit	ET	93 13732 BY -		31 43
TURCE E	NSR				"		175		
							· E.		
: APL ALC JONER	X EC	***			_ x				
	NRICENCS NESTRAN				<u> </u>	10.+			
SAMPLE DATA: SA	MPLE TYPE-EFFLUENT	LEACHAI	E, ETC.)	Standar	<u> </u>				
LATE ASSAYED	6 17	9	3	TIME 09	50				
DAL LOLOR _	None			CRRECTITY.	Ei.	Œ	ā ·	12 0	
"DAL PRIDITS	Clear	147		"EPARATE"	=	4 5	. 1	CKO.	
	AU PILL DETEU		EY YEAR X	JTHER .					
	NOF SAMPLE. 100%							n	
				PEAGENT : 14	:	- ميهز	AM-	018	
REMARKS. 10	ul bacteria								
-									
<u> </u>	ТА	INITIAL		D CALCULATE			ATIO CHECK		
	SSAY CONCENTRATION	READING	5 MIN 1 ₅ b	1150 :	,MIN	81:			
- 31 0 (BLAN	iki	90	_ 79 _	_69		C1: -= =;			
CI DIBLAN	IK)	80	67	59		ABSORBA	NCE .COLOF	R) CORRECT	TION DAT
SUMS OF READING		٨	8	8:	<u>.:</u>	'o			
MEAN BLANK RATI			R (5) =	R (15) = 3	t	lf =			
B - AI	: Ā (t) =	1		T		C ₀ 3			.
	SSAY CONCENTRATION	INITIAL READING	5-MIN	VAL READINGS	MIN	1 (5)	(, T) EFFECT	L()	Γ ₀ *(
82	6.25	134	54	37					
cs .	6.25	76	54	37			T		, · · -
83	12.5	75	43	_25					
сз	12.5	68	38	22					<u>.</u>
B4	25.0	_63	21	10					:
C4	25.0	64	22	10.					Ŀ
85	50.0	77.		4.3					
C5	50.0	73	10	4.0					
EC 50 (t-MIN.	15 °c;		BY GRAPH					100	L.
			BY CALCUI	ATOR		18.4	10.0	-	

FILE IS ST061793 MICROTOX CALCULATION SPREADSHEET DATA FOR 5 AND 15 MINUTES

DATE OF ANALYSIS: JUNE 17, 1993 ENSR LAB NUMBER: SPP STANDARD

CLIENT ID:		ONE	JARD				
5-MINUTE DATA 15-MINUTE DATA		EC50 18.4 10.0	LOWER CI 16.4 9.0	UPPER CI 20.7 11.1	R2 0.997 0.995		
BLANK READINGS CUVETTE	T=0	T=5	T=15	_			
B1 C1	90 80	79 67	69 59				
R (meann) R1 R2 DIFF	an)	0.8576 0.8778 0.8375 0.0403	0.7521 0.7667 0.7375 0.0292				
SAMPLE READINGS CUVETTE CO	ONC	T=0	T=5	T=15		PERCENT LI	T=15
C2 6.	.25 .25 2.5 2.5 25 25 25	74 76 75 68 63 64 77 73	54 54 43 38 21 22 11	37 37 25 22 10 10 4.3		14.9 17.2 33.1 34.8 61.1 59.9 83.3 84.0	33.5 35.3 55.7 57.0 78.9 79.2 92.6 92.7
GAMMA CALCULATI	ONS ONC	T=5	T=15				
B2 6. C2 6. B3 12 C3 12 B4 C4 B5	25 25 25 25 25 25 50	0.175 0.207 0.496 0.535 1.573 1.495 5.003	0.504 0.545 1.256 1.325 3.738 3.813 12.468 12.726	æ			
LOG TRANSFORMAT CUVETTE CO	NC	T=5	T=15		I	PREDICTED CONC	

COVETTE	CONC	T=5	T=15
B2	0.796	-0.756	-0.297
C2	0.796	-0.684	-0.264
B3	1.097	-0.305	0.099
C3	1.097	-0.272	0.122
B4	1.398	0.197	0.573
C4	1.398	0.175	0.581
B5	1.699	0.699	1.096
C5	1.699	0.721	1.105

	1.578963	
0.795880	1.578963	
1.096910	1.936599	0.9
1.096910	1.936599	0.9
1.397940	2.294235	1.29

1.397940 2.294235 1.29 1.698970 2.651871 1.62 1.698970 2.651871 1.62

See Paragraph 11.5 in the Microtox System Operating Manual

°C1

(t-MIN,

EC

ra:

BY GRAPH

BY CALCULATOR

0.995 0.980

27.3 , 31.6

Ak Ultilas

1.698970 0.824456 0.90

FILE IS 12384 MICROTOX CALCULATION SPREADSHEET DATA FOR 5 AND 15 MINUTES

DATE OF ANALYSIS: JUNE 16, 1993

ENSR LAB NUMBER: 12384

CLIENT ID:

LFT-A

	E DATA = FE DATA =	EC50 27.3 31.6	LOWER CI 21.0 19.3	UPPER CI 36.2 56.7	R2 0.995 0.980		
BLANK RI	T=0	T=5	T=15				
B1 C1	90 84	77 7 4	6 6 63				
	R (mean) R1 R2 DIFF	0.8683 0.8556 0.8810 -0.0254	0.7417 0.7333 0.7500 -0.0167				
SAMPLE R CUVETTE	READINGS CONC	T=0	T=5	T=15		T=5	IGHT LOSS T=15
CUVETTE	0.4 0.4 2 2 10 10 50 50 LCULATIONS CONC 0.4 0.4 2 2 10 10	84 87 82 89 79 85 84 89 T=5 0.027 0.035 0.095 0.104 0.459 0.476	71 73 65 70 47 50 27 30 T=15 0.038 0.024 0.067 0.082 0.395 0.401	60 63 57 61 42 45 24 26		2.7 3.4 8.7 9.4 31.5 32.3 63.0 61.2	3.7 2.4 6.3 7.6 28.3 28.6 61.5 60.6
B5 C5 LOG TRANS	50 50 FORMATIONS	1.701 1.576	1.596				
CUVETTE	CONC	T=5	T=15		PREDI	CTED	T=5
B2 C2 B3 C3 B4 C4 B5	-0.398 -0.398 0.301 0.301 1.000 1.000 1.699 1.699	-1.565 -1.459 -1.021 -0.983 -0.338 -0.322 0.231 0.198	-1.416 -1.616 -1.174 -1.086 -0.403 -0.397 0.203 0.187		-0.39 -0.39 0.301 0.301	794 0. 029 0. 029 0. 1 0. 1 0. 970 0.	

	12385	KCTOROIN		REDUCTION	N CHF	ET	_;	te \$ 3	1 193
4C5	RETEC/BN				_		• •		
	DIRESULTO. TORTO : TOPH TOPH TOPH LIVETORNOR FINITOR : LIVETOR FINITOR :			6.8 5.6	- <u>20</u> 3).7 }.0			
:AMPLE D	ATA: SAMPLE TYPE EFFEL	TARDA EL TRES	E. 3TO: - #	soil extrac	Ť				
PUAL CO	AYED 6 16 OLGR Pale Yello GRENDITY Clear	<u>93</u> ω	3	-ME. 1456 CORRECTION -	#20:P	12		n = .s =	
	LE SOJUSTES AITH								
PERATOR	DILUTION OF SAMPLE _K R. <u>SB</u> . <u>10 ul bacteria</u>			REAGENT MIAL	. 637 **) /K-	AM-OL	3	
		TABLE OF OBS	SERVED AN	D CALCULATED	RESU	_TS			
BLANK CUVETTE	FINAL ASSAY CONCENTRA	INITIAL TION: READING	5-MIN	NAL READINGS 15-MIN 1150 I_	 		ATIO CHEC	(
31	O (BLANK)	90	82	71		C1:)			
	0 (BLANK)	787	78	6 9		ABSORBA	NCE COLO	R) CORRECT	TION DATA
SUMS OF F	READINGS	1 =			3	lo			
	ANK RATIOS.		Ā (5) •	Ā(15) - Ā(ت)	l _f =	.,		
	FINAL ASSAY CONCENTRA	INITIAL FION: READING	5.AAINI	NAL READINGS	-MIN	1.1	t, T) EFFEC	ł	-
CUVETTE	(SPECIFY UNITS)	1(0)	The second secon		_ , _	1 (5)	1 (15)	<u> </u>	L. (
- - B2 -	0.4%	_ 87 _		_61			-	 	=-=
C2	0.4	91	76	67			-	_	-
83		85	165-	_57			<u> </u>	=	
C3	2.0	184	63	57			<u> </u>	!	
84	<u>10.0</u>	- 1-86-	<u> 43</u> _	41				=	
C4	10.0	88	46	43					
85	50.0	87	16_	15			+	- 39	·r
CS -	50.0	88	17	16			-		
EC	(t-MIN,°C)		BY GRAPH			11.6	13.5		
						11.6	11313	1	L

FILE IS 12385 MICROTOX CALCULATION SPREADSHEET DATA FOR 5 AND 15 MINUTES

DATE OF ANALYSIS: JUNE 16, 1993

ENSR LAB NUMBER: 12385 CLIENT ID: LFT-B

	EC50	LOWER CI	UPPER CI	R2
5-MINUTE DATA =	11.6	6.8	20.7	0.978
15-MINUTE DATA =	13.5	5.6	37.0	0.948

DIA	RITE	REA	DTN	22
DI.A	IN IN	R F. A	1) I N	

CUVETTE	T=0	T=5	T=15
B1	90	82	71
Cl	87	78	69
	R (mean)	0.9038	0.7910
	R1	0.9111	0.7889
	R2	0.8966	0.7931
	DIFF	0.0146	-0.0042

S	Į	U	11	LE	F	REA	D	I	N	G٤	3
			_	-							

SAMPLE REA	ADINGS				PERCENT LIG	HT LOSS
CUVETTE	CONC	T=0	T=5	T=15	T=5	T=15
	*********		*******		2626686666	
B2	0.4	87	72	61	8.4	11.4
C2	0.4	91	76	67	7.6	6.9
B3	2	85	65	57	15.4	15.2
C3	2	84	63	57	17.0	14-2
B4	10	86	43	41	44.7	39.7
C4	10	88	46	43	42.2	38-2
B5	50	87	16	15	79.7	78.2
C5	50	88	17	16	78.6	77.0

GAMMA CALCULATIONS CUVETTE CONC

CONC	1-5	1=12
0.4	0.092	0.128
0 +4 -	0.082	0.074
2	0.182	0.180
2	0.205	0.166
10	0.808	0.659
10	0.729	0.619
50	3.915	3.588
50	3.679	3.350
	0.4 0.4 2 2 10 10	0.40.092 0.4 0.082 2 0.182 2 0.205 10 0.808 10 0.729 50 3.915

LOG TRANSFORMATIONS

CUVETTE	CONC	T=5	T=15
=======			
B2	-0.398	-1.036	-0.892
C2	-0.398	-1.085	-1.129
B3	0.301	-0.740	-0.746
C3	0.301	-0.688	-0.781
B4	1.000	-0.093	-0.181
C4	1.000	-0.137	-0.208
B5	1.699	0.593	0.555
C5	1.699	0.566	0.525

PREDICTED CONC T=5

-0.39794 -0.24235 0.13 0.301029 0.461479 0.52 0.301029 0.461479 0.52

-0.39794 -0:24235 0.13

1 1.165311 0.90 1 1.165311 0.90

1.698970 1.869142 1.29 1.698970 1.869142 1.29

	KMAN	MICROTO)	(T DATA	REDUCTIO	iii uH	===		-AE-8/	31/93
. 418 2	12386			LTFC	*****		10770 09		
493	RETEC/BN						- **1 *** 5 .		
EPORTE	D RESULTS. 174142 L	, ==	- × ,	-		5 Mg			
	 EC								
	LAFORNEE F WITCH						·		
	. JAPOBNOS TUTTO	5m.0:	13.5	5 .	. 10	9.7			
.enaaks	. J. Fiberica	15 min :	10.			0.0			0
CAMPLE D	ATA: SAMPLE TYPE-EFF.	TAMOREL THE	E ETO <u>2</u>	ioil extra	đ				
		<u>93</u>		ME. 152	7				
CUAL CO	clor tale yellow	Ŋ		CRRECTION.		eC	53 ·	ـ 0.	
SUAL D	REIDITS CLEAR			EPARATION:	9=:	- 7.		.o =	
: 4: ·			. ***		٠				
V 17-14	LL: - JUSTES J.:174	s 3	⊩ ,c: X	.7468 .					
ardaay:	PILUTION OF SAMPLE. 10	0%							
	5B			REAGENT VIA		- NC:	AM-018		
REMARKS.	10 ul bacterio	<u></u>							
		TABLE OF OBS	ERVED AN	D CALCULATE	D RESU	LTS			
BLANK CUVETTE	FINAL ASSAY CONCENTRATE (SPECIFY UNITS)	INITIAL FION: READING	5 MIN 15b	COUNTY PARAMANA	MIN	BLANK F	ATIO CHEC	·	
91	J (BLANK)	90	82	73		C1: - 51			
	() (BLANK)	91	82	74		ABSORBA	NCE COLO	R) CORRECT	TION DATA
SUMS OF F	READINGS	4	3		3	ı			
MEAN BLA	NK RATIOS.		Ā (5) -	Ā (15) - Ā		ir			
8	A: R (t) =			1		c _o =			
	İ	INITIAL	FI	NAL READINGS	s	1.	(t, T) EFFEC	rs	•
SAMPLE CUVETTE	FINAL ASSAY CONCENTRAT (SPECIFY UNITS)	TION READING	5-MIN 1(5)	15-MIN	- MIN	l (5)	[`(15)	[[]	Γ,*(
B2	0.4%	_ : 87_	75	65			!		
ប	0.4	82	71	62					-
83	2.0	83	65	58			i		_
C3	2.0	82	64	55			Ϊ	=	F =
B4	10.0	1 84	47	43			!		
C4	10.0	85	47	44					
85	50.0	87	21	90				1	,
cs cs	50.0	82	20	19	•		T		·
50	(t-MIN. °C)		BY GRAPH					3	-
EC	IC-WILLY.		BY CALCU	LATOR		16.3	17.2		day"

FILE IS 12386
MICROTOX CALCULATION SPREADSHEET
DATA FOR 5 AND 15 MINUTES

DATE OF ANALYSIS: JUNE 16, 1993

ENSR LAB NUMBER: 12386 CLIENT ID: LFT-C

	EC50	LOWER CI	UPPER CI	R2
5-MINUTE DATA =	16.3	13.5	19.7	0.997
15-MINUTE DATA =	17.2	10.3	30.0	0.981

BLANK READINGS

CUVETTE	T=0	T=5	T=15
B1	90	82	73
Cl	91	82	74
	R (mean) R1 R2 DIFF	0.9061 0.9111 0.9011 0.0100	0.8121 0.8111 0.8132 -0.0021

SAMPLE READINGS

CUVETTE	CONC	T=0	T=5	T=15	PERCENT LIG	HT LOS: T=15
B2					=========	
C2	0.4	87	75	65	4.9	8.0
B3	0.4	82	71	62	4.4	6.9
C3	2	83	65	58	13.6	14.0
B4	2	82	64	55	13.9	17.4
C4	10 10	84	47	43	38.2	37.0
B5	50	85	47	44	39.0	36.3
C5	50	87	21	20	73.4	71.7
	30	82	20	19	73.1	71.5

GAMMA CALCULATIONS

CUVETTE	CONC	T=5	T=15
B2	0.4	0.051	0.087
C2	0.4	0.046	0.074
B3	2	0.157	0.162
C3	2	0.161	0.211
B4	10	0.619	0.587
C4	10	0.639	0.569
B5	50	2.754	2.533
C5	50	2.715	2.505

LOG TRANSFORMATIONS

CUVETTE	CONC	T=5	T=15
B2 C2 B3 C3 B4 C4 B5 C5	-0.398 -0.398 0.301 0.301 1.000 1.699 1.699	-1.292 -1.333 -0.804 -0.793 -0.208 -0.195 0.440 0.434	-1.060 -1.130 -0.790 -0.676 -0.232 -0.245 0.404
		J. 434	0.399

PREDICTE) <u></u>	
CONC		
-0.39794	-0.13908	

-0.39794 -0.13908 0.26 0.301029 0.383360 0.54 0.301029 0.383360 0.54 1 0.905805 0.82

1 0.905805 0.82 1.698970 1.428249 1.10

1.698970 1.428249 1.10

		ICAO IO.		REDUCTION SH	IFET		AE 8/31/	93
ָי דְּ וּמִיי.	2			LTFD		:::::::::::::::::::::::::::::::::::::::		
.iede	ReTec/BN			-				
EPORTE	RESULTS. TONIC 1	177 11.	٠ ٨ ٠					
				к	41. da .			
	JAF-DENCE F 4- 502							
	I CONFIDENCE LITES -				93.2			
-EMARKS	-	15min		.4	129.1			
Y								
SAMPLE DA	ATA: SAMPLE TYPE SEFELUENT	LIACHAT	E. ETC.: 5	oil extract				
CATE ASS	AYED 6 16	93		-IME. 1600				
'SUAL CO	Pale Yellow			CORRECTION REQUI	FED	-s.2 h	10 C	
SUAL III	BBIDITY Clear			SPARATION DETE.	+ = C	e: :	:o 🗆	
. Fi Ax r				<u> </u>			a a	
	LL. JOSUSTED ATT- 7.		Λ. O.X	,THER :				
PIMARY	DILUTION OF SAMPLE. 100%							
	= <u>56</u>			REAGENT MAL LUT	::0_24	AM-01	8	
REMARKS.	10 ul bacteria							

	TA			D CALCULATED RES				
BLANK CUVETTE	FINAL ASSAY CONCENTRATION (SPECIFY UNITS)	INITIAL READING	5 MIN 15b	IAL READINGS 15-MIN MII 115b		ATIO CHECK	•	
51	0 (BLANK)	^						
		90	82	72	C1: (7 -5)			
હા	0 (BLANK)	<u>90</u> 95	<u>83</u>	_ 7 2 75			R) CORRECT	TION DATA
SUMS OF F				75			R) CORRECT	TION DATA
SUMS OF F	EADINGS NK RATIOS.	95	83	75	ABSORBA		R) CORRECT	TION DATA
SUMS OF F	EADINGS NK RATIOS.	95	83	75	ABSORBA	NCE (COLOI		TION DATA
SUMS OF F	READINGS NK RATIOS. All = R (t) =	95	83 R (5) -	75	ABSORBA	NCE (COLOI	rs ·	
SUMS OF F	READINGS NK RATIOS. AT = R (t) =	95	R (5) -	75 R (15) - R (ABSORBA 10 = 1f = Co =	NCE (COLOI		TON DATA
SUMS OF F	READINGS NK RATIOS. All = R (t) =	95	83 R (5) -	75 R (15) - R (NAL READINGS 15-MIN 1 (15) 0 1 0 1	ABSORBA 10 = 1f = Co =	NCE (COLOI	rs ·	
SUMS OF F MEAN BLA B: ÷ SAMPLE CUVETTE B2 C2	FINAL ASSAY CONCENTRATION (SPECIFY UNITS) 0.42 0.4	95 initial reading 100 c	5-MIN 1(5) D	75 R (15) - R (NAL READINGS 15-MIN 1 (15) 0 1 0 0	ABSORBA 10 = 1f = Co =	NCE (COLOI	rs ·	
SUMS OF F MEAN BLA B: ÷ SAMPLE CUVETTE B2 C2 B3	FINAL ASSAY CONCENTRATION (SPECIFY UNITS) 0.42 2.0	INITIAL READING 1(0) C	\$3 \$\frac{1}{2}\$\$	75 R (15) - R (NAL READINGS 15-MIN	ABSORBA 10 = 1f = Co =	NCE (COLOI	rs ·	
SUMS OF F MEAN BLA B: : SAMPLE CUVETTE B2 C2 B3 C3	FINAL ASSAY CONCENTRATION (SPECIFY UNITS) 0.42 0.4 2.0 2.0	95 INITIAL READING 1(0) © 88 88	\$3 \$\frac{1}{2}\$	75 R (15) - R (NAL READINGS 15-MIN	ABSORBA 10 = 1f = Co =	NCE (COLOI	rs ·	
SUMS OF F	FINAL ASSAY CONCENTRATION (SPECIFY UNITS) 0.42 0.4 2.0 2.0 10.0	INITIAL READING 1(0) C	\$3 \$\frac{3}{1(5)}\$ \$\frac{78}{66}\$ \$\frac{62}{39}\$	75 R (15) - R (NAL READINGS 15-MIN	ABSORBA 10 = 1f = Co =	NCE (COLOI	rs ·	
SUMS OF F MEAN BLA B SAMPLE CUVETTE B2 C2 B3 C3 B4 C4	FINAL ASSAY CONCENTRATION (SPECIFY UNITS) 0.42 0.4 2.0 2.0 10.0	INITIAL READING 1(0) C	5-MIN FIN 1(5) -78 -66 -62 -39 -39 -39	75 R (15) - R (NAL READINGS 15-MIN	ABSORBA 10 = 1f = Co =	NCE (COLOI	Γ()	
SUMS OF F MEAN BLA B: + SAMPLE CUVETTE B2 C2 B3 C3 B4 C4 B5	FINAL ASSAY CONCENTRATION (SPECIFY UNITS) 0.4% 0.4 2.0 2.0 10.0 10.0	INITIAL READING 1(0) C	\$3 \$\frac{1}{2} \cdot \frac{1}{2} \cdot 1	75 R (15) - R (NAL READINGS 15-MIN	ABSORBA 10 = 1f = Co =	NCE (COLOI	rs ·	
SUMS OF F MEAN BLA B SAMPLE CUVETTE B2 C2 B3 C3 B4 C4	FINAL ASSAY CONCENTRATION (SPECIFY UNITS) 0.42 0.4 2.0 2.0 10.0	INITIAL READING 1(0) C	5-MIN FIN 1(5) -78 -66 -62 -39 -39 -39	75 R (15) - R (NAL READINGS 15-MIN 1 (15)	ABSORBA 10 = 1f = Co =	NCE (COLOI	Γ()	

1.698970 2.288529 1.86

1.698970 2.288529 1.86

FILE IS 12387 MICROTOX CALCULATION SPREADSHEET DATA FOR 5 AND 15 MINUTES

DATE OF ANALYSIS: JUNE 16, 1993

B5

C5

1.699

1.699

0.738

0.726

0.723

0.711

ENSR LAB		12387 LFT-D	2333				
5-MINUTE 15-MINUTI		EC50 9.8 10.1	LOWER CI 1.6 1.4	UPPER CI 93.2 129.1	R2 0.886 0.859		
BLANK REA	T=0	T=5	T=15				
B1 C1	90 95	82 83	72 75	•			
	R (mean) R1 R2 DIFF	0.8924 0.9111 0.8737 0.0374	0.8000				
SAMPLE RECUVETTE	EADINGS CONC	T=0	T=5	T=15		PERCENT LI T=5	T=15
B2 C2 B3 C3 B4 C4 B5 C5 GAMMA CAI CUVETTE B2 C2 B3 C3 B4 C4 B5	0.4 0.4 2 2 10 10 50 50 CONC 0.4 0.4 2 2 10 10 50	89 88 82 84 84 82 87 85 0.018 0.190 0.180 0.190 0.922 0.876 5.470	78 66 62 63 39 39 12 12 12 0.025 0.249 0.185 0.151 0.854 0.810 5.286	69 56 55 58 36 36 11 11		1.8 16.0 15.3 16.0 48.0 46.7 84.5 84.2	2.4 19.9 15.6 13.1 46.1 44.8 84.1 83.7
C5 LOG TRANS CUVETTE	50 FORMATION CONC	5.321 S T=5	5.141 T=15		:	PREDICTED CONC	T=5
B2 C2 B3 C3 B4 C4	-0.398 -0.398 0.301 0.301 1.000	-1.739 -0.722 -0.744 -0.722 -0.035 -0.057	-1.600 -0.604 -0.733 -0.821 -0.068 -0.091			-0.39794 -0 0.301029 0. 0.301029 0. 1 1.	534058 0.34 535788 0.85 535788 0.85 412158 1.35 412158 1.35

365	ACTOR DOWN THE TOTAL TOTAL			AEDUCTION		:57		AE 8/31	193
7-13	ReTEC/BN				-				
FEPORTE	ORESULTS. TEXAGO 194 144 155 CAFIGENCE FAUTUR). 6		 13.3			
-EVARes	of CONFIDENCE (LIEF ALL	5 min :		9	(<i>e</i>	7.0			
ATE ASSA	ATA: SAMPLE TYPE EFFECTION AYED. 6 17 PLCR Light Yellow CREDITY Clear LL: WOLLSTED WITH 1944	9	3	ORRECTION. SPARATION.	058 -=:	1 0			
PERATOR	SB 10 UL bacteri			∃EAGEMT`::	L.SF.	- پهر	AM-C	018	
	TA	BLE OF OBS	SERVED AN	D CALCULATE	D RESU				
BLANK CUVETTE	FINAL ASSAY CONCENTRATION	INITIAL II READING		VAL READING 15-MIN 1 ₁₅ b	S 	81: 3 5)	ATIO CHEC	K	
61	0 (BLANK)	90	80_	71		C1: 🚊 😘			
C1	0 (BLANK)	-89 -	78	- ଡ଼		ABSORBA	NCE COLO	R) CORRECT	ION DAT
SUMS OF F	READINGS	; - <u>-</u>	· <u>3</u>	(4)	. 3	'o			
	NK RATIOS.		Ā (5) -	A (15) - A	i(:	If =			
	1	INITIAL		NAL READING	-		t, T) EFFEC	TS	-
SAMPLE CUVETTE	FINAL ASSAY CONCENTRATION (SPECIFY UNITS)		5.MIN	15-MIN :	MIN	1 (5)	[(15)	r()	L°.(
B2	0.4%	185	74	64			į		
CZ	0.4	783	71	62			T – – -		===
В3	2.0	85	71	61 .			1		
C3	2.0	84	71	60			T		
84	10.0	83	60	53			į	-	
C4	10.0	86	61	54					
85	50.0	87	36	32				-	* *
ප	50.0	86	37	32			T '	727 ***********************************	*
EC	(t-MIN,OC)		BY GRAPH			53.0	59.1	ALCO 1745	-

FILE IS 12388 MICROTOX CALCULATION SPREADSHEET DATA FOR 5 AND 15 MINUTES

DATE OF ANALYSIS: JUNE 17, 1993 ENSR LAB NUMBER: 12388

CLIENT I	D:	LFT-E						
5-MINUTE	C DATA =	EC50 53.0 59.1	LOWER CI 29.6 37.9	UPPER CI 123.3 107.0	R2 0.965 0.970		_	
BLANK RE	ADINGS T=0	T=5	T=15	_				
B1 C1	90 89	80 78	71 69	-				
	R (mean) R1 R2 DIFF	0.8826 0.8889 0.8764 0.0125	0.7821 0.7889 0.7753 0.0136					
SAMPLE R	EADINGS CONC	T=0	T=5	T=15		PERCENT T=5		OSS 15
B2 C2 B3	0.4 0.4 2	85 83 85	74 71 71	64 62 61		1.4 3.1 5.4	3	.7 .5

CONC	T=0	T=5	T=15	T=5	T=15
	85	74	64	1.4	3.7
0.4	83	71	62	3.1	4.5
2	85	71	61	5.4	8.2
2	84	71			8.7
10	83	60			18.4
10	86	61			19.7
50	87				53.0
50	86	37	32	51.3	52.4
	0.4 0.4 2 2 10 10	0.4 85 0.4 83 2 85 2 84 10 83 10 86 50 87	0.4 85 74 0.4 83 71 2 85 71 2 84 71 10 83 60 10 86 61 50 87 36	0.4 85 74 64 0.4 83 71 62 2 85 71 61 2 84 71 60 10 83 60 53 10 86 61 54 50 87 36 32	0.4 85 74 64 1.4 0.4 83 71 62 3.1 2 85 71 61 5.4 2 84 71 60 4.2 10 83 60 53 18.1 10 86 61 54 19.6 50 87 36 32 53.1

GAMMA CALCI	ULATIONS CONC	T=5	T=15
B2	0.4	0.014	0.039
C2	0.4	0.032	0.047
B3	2	0.057	0.090
C3	2	0.044	0.095
B4	10	0.221	0.225
C4	10	0.244	0.246
B5	50	1.133	1.126
C5	50	1.052	1.102

CUVETTE	FORMATIONS CONC	T=5	T=15	PREDICTED CONC	T=5
B2 C2 B3 C3 B4 C4 B5 C5	-0.398 -0.398 0.301 0.301 1.000 1.699 1.699	-1.859 -1.497 -1.246 -1.354 -0.656 -0.612 0.054 0.022	-1.412 -1.328 -1.047 -1.023 -0.648 -0.610 0.052 0.042		21675 0.5 21675 0.5 86103 0.5 86103 0.5 50532 0.6 50532 0.6

-0.39794	0.121675	
-0.39794	0.121675	
0.301029	0.186103	0.57
0.301029	0.186103	0.57
1	0.250532	0.61
	0.250532	0.61
1.698970	0.314960	0.64

EEI	12388D	28.073		LFT-E	. ล้ายลั		te 8/31/c	73
	RETEC/BN			416		-		
.,				¥ ==		***************************************		
	£0		V					
	a # *		110	_	39.2			
•	* ** * **	<u>5 min:</u> 15 min:	40. 38.	5 4	155.5			
.MPLE DA	/ 17		13 -	Soil extra	<u>34</u>			
اري - 📆	Light Ye		5					
	Clear	11000			* w			
	. <u></u>			4 ⁵ · ·	×		<i>,</i> -	
			- X	*				
MT "	<u> </u>)%						
.== 4193	SB			14-12	- المر	AM-OL	8	
THARKS	10M bacteria							
			A CONTRACTOR OF THE STATE OF TH	D CALCULATED				
SLANK SUVETTE	FINAL ASSAY CONCENTRAT	INITIAL FION' READING	MIN 50	S-MIN	MIN BI:	DEHO CITAR	x 	
) (BLANK)	90	82	73	C1.			
•	3Lnisk.	91	84	72		ANCE COLO	RI CORREC	TION DAT
UNIS OF F	EADINGS	-	<u> </u>	<u> </u>				
	NK RATIOS.		· · · · · · · ·	3 (15)	" :-			
	<u>A.</u> Ř (t) -				C ₀			-
SAMPLE CUVETTE	FINAL ASSAY CONCENTRAT	INITIAL ION: READING	5 MIN 1(5)	NAL READINGS 15-MIN	MIN (5)	(t. T) EFFEC	ر الراا ال	Γ.*(
32	0.4%	87_	_78_	_68			<u> </u>	
C2	0.4	91	82	71				
= 3	2.0	95	<u>8a</u> _	_73				L
-33	2.0	89	78	69		*	<u> </u>	-
	10.0	94	71	_62		<u> </u>		L
C4	10.0	94	71	63		<u>į</u>		
= = 5 = 5	50.0	91	41_	36		<u> </u>		
	50.0	85	39	34		1	1	Δ2
EC	(t-MIN°C)		BY GRAPH	ATOR	57.6	662	A GIN	
						W16 /		-

~^

*See Paragraph 11.5 in the Microtox System Charating Manual

FILE IS 12388D
MICROTOX CALCULATION SPREADSHEET
DATA FOR 5 AND 15 MINUTES

DATE OF ANALYSIS: JUNE 17, 1993

ENSR LAB NUMBER: 12388D CLIENT ID: LFT-E

DIFF

5-MINUTE	DATA = E DATA =	EC50 57.6 66.2	LOWER CI 40.5 38.4	UPPER CI 89.2 155.5	R2 0.986 0.942
BLANK RE	ADINGS T=0	Т=5	T=15	_	
B1				-	
Cl	90 91	82 84	73 72		

0.0199

-0.0120

SAMPLE READIN	CONC	T=0	T=5	T=15	PERCENT LIG	T=15
B2 C2 B3 C3 B4 C4 B5	0.4 0.4 2 2 10 10 50	87 91 95 89 94 91	78 82 82 78 71 71 41	68 71 73 69 62 63 36	2.2 1.7 5.9 4.4 17.6 17.6 50.9	2.4 2.6 4.1 3.2 17.7 16.3 50.6 50.1

GAMMA CALCI	JLATIONS		
CUVETTE	CONC	T=5	T=15
B2	0.4	0:023	0.025
C2	0.4-	0.018	0.027
B3	2	0.062	0.043
C3	2	0.046	0.033
B4	10	0.214	0.215
C4	10	0.214	0.195
B5	50	1.036	1.025
C5	50	0 000	1 002

LOG TRANSF	ORMATIONS		
CUVETTE	CONC	T=5	T=15
224222222			
B2	-0.398	-1.640	-1.602
C2	-0.398	-1.751	-1.571
B3	0.301	-1.204	-1.371
C3	0.301	-1.333	-1.477
B4	1.000	-0.669	-0.668
C4	1.000	-0.669	-0.709
B5	1.699	0.015	0.011
C5	1.699	-0.001	0.001

DDE	DICTE	n				
	CONC			T#5		-
-0.3	39794	0.	148	113	٥.	6
-0.3	39794	0.	148	113	0.	6
0 2/	21020	•	166	104	•	-

0.301029 0.166104 0.64 0.301029 0.166104 0.64 1 0.184096 0.64 1 0.184096 0.64

1.698970 0.202088 0.65 1.698970 0.202088 0.65

APPENDIX C LETTUCE SEED GERMINATION TEST DATA

TOXICITY DATA PACKAGE COVER SHEET

Test Type: (Acute) (Sub)Chronic	Project Number: 5505 1093 - 124-032
Test Substance: Effluent (Other:)	Species: Luctura cata
Parly " Service Control of the Contr	
Dilution Water: Receiving Receiving Match Effluent Match	Organism Lot or Batch Number: 7578
Mod. Hard Hard Very Hard Other/(Specify):	Age: Supplier: Supplier: Congany
Dilution Water RW# or ENSR#:/	Concurrent Control Water: RW#:
+842- FCETL Sample Number: 4746 ///	Sample Type: (:: 404 tp
Collection Date and Time: From: 6/3/73 @ /	2 / @ / @
To:@ /	a/a/
Date and Time Test Began: 6/16/73 @ 1630	Date and Time Test Ended: 6/21/73 @ 1530
Protocol Number:	Investigator(s):
Background Information	
Type of Test: Lettuce Sood Germination	pH Control?: Yes No If Yes, give % CO2:
Test Temperature: 25°C Test Chambers: 100 × 15	
Test Solution Vol.: 509 Number of Replicates per Treatm	nent: 6 16 13 14 3
Length of Test: 5 days Number of Organisms per Replic	cate:
Type of Food and Quantity per Chamber:	Feeding Frequency:
	1
Test Substance Characterization Parameters and Frequency:	Hardness: Alkalinity:
NH ₃ :	Conductivity: NA TRC: NA
100 0	5 10 5 / 5 5
Test Concentrations (Volume:Volume): 100, 50, 2	5, 12.5, 6.25
Agency Summary Sheet(s)?: None Yes (Specify):	
Reference Toxicant Data: Test Dates: to	LC ₅₀ or IC ₂₅ (Circle):
	od for Determining Ref. Tox. Value:
	or to the state of
Special Procedures and Considerations: 5 501 5	emples composited + the test
~vn.	The state of the s
Study Director Initials: Date:	6/16/73

SEED GERMINATION BIOLOGICAL DATA

Project Number:	3505-073-124-032	27
Test Species (Circle	a) Lactuca sativa Other (Specify):	8

Conc.	Test Replicate	Initial Number of Seeds	Number of Germinated Seeds	Remarks
0	А	10	10	
	В	10	9	
	С	10	C_{-}	
	D			
6.25	A	10	ठ	
	В	10	7	
	С	10	2	
	D			
12.5	A	10	9	
	В	10	7	
	С	10	10	
	D			9
그5	Α	10	8	
	В	10	6	
	С	10	5	
	D			
.50	Α	10	_3	
	В	10		
	С	10	4	
	D			
100	Α	10	2	
	В	10		
	С	10	O	
	D			
	Date:	6/16/93	6/21/93	
	Time:	1630	1530	
	Initials:	DAP	DIP	

ROOT ELONGATION PHYTOTOXICITY

A 74113

FCETL QA From No. 068 Effective 8/91 Page 2 of ____

												ray	e _2 of /_
Client:		31	/				Proje	ct #: 9505-093-12	4.032	Sample I.D	.:		
Date Rec	eived:		6.	1719	3		Date	Test Initiated: 6 / 16 / 7	3	Date Test 1	rminated:	0/21/	23
Date Elut	riate Prep	ared:		NA			1	Initiated: $/630$		Time Termi	nated: / f	5 300	
Seed:	La	c.tu	ca	5971	va		Seed	Size Grade: #3		Tech(s):	DSF)	
Sample Type ¹	Conc.	Rep		Re	oot Ler (m r			Comments	Inits.	Hardness (mg/L CaCO ₃)	Alkalinity (mg/L CaCO ₃)	Initial pH	Final pH
NC	0	A	3924	35	3524	2027	353E	X= 28.9	PAK	1/10	1/2	111	NA
		\mathbb{B}	335	294	40/30	37 20	30/	32,6					
\perp	\downarrow	C	36	252	3930	293	24	25.2					
S	6.25	A	2/35	23/5	4/27	2440	/	28.9					
		B	280	2948	4632	12	/	29.6					
	$\overline{}$	C	3022	32,2	233	24/2		27.4					
	12.5	A	450	2636	2/15	35 40	40	28.7					
		B	1920	26/22	1526	26		20.7					
		C	3335	396	431	3520	24/0						
	25	A	3627	232	3325	2016		26.9					
		B	13/0	14 35	3720			21.5					
		C	3/25	////	20			24.4					
	50	A	223	35				26.7					
		B						No generation (0)					
$\overline{\psi}$	V	C	2/5	#15				19.6	\bigvee				

¹ E.g., Sample (S), Positive Control (PC), Negative Control (NC)

ROOT ELONGATION PHYTOTOXICITY

FCETL QA From No. 068 Effective 8/91 Page 4_ of __/

	N					Proje	ct #: 9505-093-124	~ () J, 5	Sample I.D.	å		
ved:	61	7/9	3			Date	Test Initiated: 6/16/	73			51211	13
ate Prep			VA			Time	Initiated: /630	<u> </u>				
Lac	tuca	. 54	tiv	a		Seed	Size Grade: # 3		Tech(s):			
Conc.	Rep				igth		Comments	Inits.	Hardness (mg/L CaCO ₃)	Alkalinity (mg/L CaCO ₃)	Initial pH	Final pH
100	A	10				/	V=17.5	DAP	NA	N.A	1/4	NA
	B	16	/				· = 16	DAP				
V	C						No Germination (0)	DAP				

							**************************************		4			
(Laci	te Prepared: Lactuca Conc. Rep	te Prepared: Lactura Second. Conc. Rep OO A 178	te Prepared: NA Lactica Setiv Conc. Rep Re OO A 1718	te Prepared: Lactica Setiva Conc. Rep Root Ler 00 A 178	te Prepared: Lactica Setiva Conc. Rep Root Length OO A 178	te Prepared: Lactura Settina Seed Conc. Rep Root Length	te Prepared: A Time Initiated: 1630 Lactura Settina Seed Size Grade: #3 Conc. Rep Root Length Comments $Y = 17.5$ $X = 16$	te Prepared: A Time Initiated: 1630 Lactura Settina Seed Size Grade: $\#3$ Conc. Rep Root Length Comments Inits. $V = 17.5$ DAP $V = 16$ DAP	te Prepared: NA Time Initiated: 1630 Time Termin Lactura Settina Seed Size Grade: #3 Tech(s): Conc. Rep Root Length Comments Inits. Hardness (mg/L CaCO ₃)	te Prepared: NA Time Initiated: 1630 Time Terminated: Lactura Settina Seed Size Grade: #3 Tech(s): T Conc. Rep Root Length Comments Inits. Hardness (mg/L CaCO ₃) T T T T T T T T	te Prepared: NA Time Initiated: 1630 Time Terminated: 1530 Lactura Settina Seed Size Grade: #3 Tech(s): NA Conc. Rep Root Length Comments Inits. Hardness (mg/L (mg/L (mg/L (CaCO ₃))) Hardness (mg/L (CaCO ₃)) PH NA

¹ E.g., Sample (S), Positive Control (PC), Negative Control (NC)

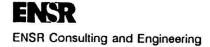
ENSR ENSR Consulting and Engineering

Page: 5 / 5
FCETL QA Form No. 073
Effective 11/91

AL S/31/93

Test Material Quantities per Concentration

Sponsor/Clien	nt: B/	V		Test	Substa	nce:	50 i				Test :	Species	Lac	etuca	i. 5q	tiva.	
Project Number	er: 8505-c	083-124	1-032	Date	Sampl	ed:	5/3.	193			Desired Quantity of Material: 300 cg						_
Comments:	Samples	wore			Qu	antity of	Test	Materia	al (g)		Quantity of Artificial Soil (g)						
Compa	1	before A	Analysis	Concentrations Being Tested					Con	centrat	ions Be	ing Tes	sted				
Sample Number	ENSR Number	MF (%)	WHC (mL)	0	6.25	12.5	25	50	100		0	6.25	12.5	25	50	100	
LTA-LTFE	4842 -	13.7	34.8/100	0	21.32	42,64	y5.18	17055	300		300	281.65	262.5	225	150	0	
	4846																



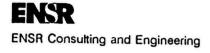
Page: 6 F 15
FCETL QA Form No. 074
Effective 11/91

1 4 8/31/13

Hydration Water Volumes per Concentration

Sponsor/Clie	nt: Z	BN		Test	Substa	ince:	5.,	<i>i</i>)		Test :	Species	La	ctus		tiv	
Project Numb	er: 8505-0	93-124	1-032	Date	Sampl	ed:	6/	3/9	3	Test Species Lactuca setiva Test Endpoint(s): Gramina tion t						
Material per T				Perc	ent Hyd	iration (Desire	d: >	75	Root Elongation						
Comments:	Samples	were			Hyd	ration V	Vater p	er 100	g (B)	Hydration Water per <u>50</u> g ¹						
Composita	d before	Analy	1515		Con	centrat	ions B	eing T	ested	 Concentrations Being Tested						
Sample Number	ENSR Number	MF (%)	WHC (mL)	0	6.25	12.5	25	50	10c	0	6.25	12.5	25	50	100	
	4842-	13.7	34.8/100	31.18	30.105	28.92	26.56	21.94	12.4	15.64	15.05	14.46	13,28	10.92	6.2	
LTFE	4846			0/12/3												
												9	X4.,			

Page: 7 o F 15
FCETL QA Form No. 071
Effective 11/91


DJP 8/-7/23
At 8/31/93

Moisture Fraction Calculation

Sponsor/Client:			Test Sub	ostance: S	oil	Date Receive	od: 61	7193	Date(s) Hor	nogenized:	6/14/23
Project No: 1/4	0-020-	200	Date Sar	npled: 6/3	3/93	Date In Oven	:6/:4/73	Time In: 1600	Date Out: 6	15/93time Ou	t: 1430
Sample Number	ENSR Number	Container Size	Boat Weight (g)	Weight of Soil (g) (A)	Total Initial Wet Wt. (Soil + Boat) (g) (B)	Total Final Dry Weight (g) (C)	Moisture Fraction (MF) (E)	Amount of Wet Soil to Tumble	Amount of MQ Water to Tumble	Date/Time Tumbling Began	Date/Time Tumbling Ended
LTFALTEB	4842,4843		217.3	196.6	413.9	386.9	13.7%	NA	NA	NA	NA
LTFC,	4844		8								
LTFD.	4845										
LTFE	4846										
(combined)	cumbined										

Moisture Fraction = (B-C)/A

Quantity of Wet Sediment to Tumble = 75g + E(75) Quantity of Milli-Q Water to Tumble = 300 mL - E(75)

Page: 3 F 15 FCETL QA Form No. 072 Effective 11/91

DAP 81-7/23 AE 8/31/13

Water Holding Capacity

Sponsor/Clien	nt: Rotec	/BN	Test Substance	se: So î			Date Received	6/7	193
Project No.:			Date Sampled	: 6/3/	73		Today's Date:	6 /15	
Sample Number	ENSR Number	Weight of Dry Sample (g) ¹ (A)	Amount of MQ or DI Water Added (mL)	Wt. of Funnel & Wetted Filter Paper (g) (B)	Time Start Drain	Time End Drain	Final Weight of Funnel, Paper, & Soil (g) (C)	WHC (mL) per	Remarks
LTFA-	4842-	116.8	100+	167.5	1512	1745	325	34.8	17,4 m/ 50 mls
LTFE	4846								
combined	combined								
			3						

¹Dried at 104°C for 24 hours.

WHC = C-(A+B) If more or less than 100 g of dried soil was used, then: WHC per 100g = 100÷A(WHC)

9 of 15 DAP 5/27/83 NE S/31/93

SPECIES: Latuca sat: CHEMICAL: SEDIMENT

RAW DATA:

CONCENTRATION(%) 6.25 12.50 25.00 50.00 100.00 NUMBER EXPOSED: 30 30 30 30 30 30 MORTALITIES: 7 4 11 23 27 30 30 30 30 30 7 4 11 23 27 18.33% MORTALITIES:

SPEARMAN-KARBER TRIM:

SPEARMAN-KARBER ESTIMATES: LC50: 30.04

95% LOWER CONFIDENCE: 95% UPPER CONFIDENCE:

NOTE: MORTALITY PROPORTIONS WERE NOT MONOTONICALLY INCREASING.

ADJUSTMENTS WERE MADE PRIOR TO SPEARMAN-KARBER ESTIMATION.

NOTE: REQUESTED TRIM OF 0.00% IS TOO SMALL.

CALCULATED TRIM OF 18.33% WAS USED.

WOULD YOU LIKE TO HAVE A COPY SENT TO THE PRINTER(Y/N)?

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

FOR REFERENCE, CITE:

HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DATE: 8/27/93 DURATION: 5 DAYS TEST NUMBER: 124-032

CHEMICAL: SEDIMENT SPECIES: Latuca sat

RAW DATA:

CONCENTRATION(%)
NUMBER EXPOSED: 6.25 12.50 25.00 50.00 100.00 30 30 30 30 30 7 4 11 23 27 MORTALITIES:

SPEARMAN-KARBER TRIM: 18.33%

(30.04 SPEARMAN-KARBER ESTIMATES: LC50: 95% LOWER CONFIDENCE: 23.43

95% UPPER CONFIDENCE:

NOTE: MORTALITY PROPORTIONS WERE NOT MONOTONICALLY INCREASING. ADJUSTMENTS WERE MADE PRIOR TO SPEARMAN-KARBER ESTIMATION.

NOTE: REQUESTED TRIM OF 0.00% IS TOO SMALL.

CALCULATED TRIM OF 18.33% WAS USED.

10 of 15 DAP 8/27/93 AE 8/31/93

```
### Source of the state of the
```

Calculated B statistic = 3.89

Table Chi-square value = 15.09 (alpha = 0.01)
Table Chi-square value = 11.07 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 2.00 Used for Chi-square table value ==> df (#groups-1) = 5

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

.....

8505-093-124-032 L. sativa germination test

File: a:\124.32g Transform: ARC SINE(SQUARE ROOT(Y))

// oF15 Dap 8/27/93 NE 8/31/93

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	control	3	1.249	1.412	1.303
2	6.25	3	0.991	1.107	1.068
3	12.5	3	0.991	1.412	1.217
4	25	3	0.785	1.107	0.926
5	50	3	0.159	0.685	0.474
6	100	3	0.159	0.464	0.315

3505-093-124-032 L. sativa germination test

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM
1	control	0.009	0.094	0.054
2	6.25	0.004	0.067	0.039
3	12.5	0.045	0.212	0.123
4	25	0.027	0.165	0.095
5	50	0.077	0.278	0.161
6	100	0.023	0.153	0.088
		•••••		

8505-093-124-032 L. sativa germination test

File: a:\124.32g Transform: ARC SINE(SQUARE ROOT(Y))

ANOVA TABLE

SOURCE	DF	ss	MS	F
Between	5	2.444	0.489	15.752
Within (Error)	12	0.372	0.031	
Total	17	2.817		

Critical F value = 3.11 (0.05,5,12)

Since f > Critical F REJECT Ho:All groups equal

8505-093-124-032 L. sativa germination test

File: a:\124.32g Transform: ARC SINE(SQUARE ROOT(Y))

DUNNETTS TEST - TABLE 1 OF 2 Ho:Control<Treatment

12 0F15 DAP 8/27/33 AE \$\frac{1}{31} \qqq

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1	control	1.303	0.933		
2	6.25	1.068	0.767	1.633	
3	12.5	1.217	0.867	0.598	
4	25	0.926	0.633	2.622	*
5	50	0.474	0.233	5.764	*
6	100	0.315	0.100	6.873	*

Dunnett table value = 2.50 (1 Tailed Value, P=0.05, df=12,5)

8505-093-124-032 L. sativa germination test

	DUNNETTS TEST -	TABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	control	3			
2	6.25	3	0.274	29.4	0.167
3	12.5	3	0.274	29.4	0.067
4	25	3	0.274	29.4	0.300
5	50	3	0.274	29.4	0.700
6	100	3	0.274	29.4	0.833

DAP 8/27/93 AE 8/31/93

8505-093-124-032 root length test
File: a:\124.32r Transform: NO TRANSFORMATION

Shapiro Wilks test for normality

.....

D = 75.407

W = 0.940

Critical W (P = 0.05) (n = 9) = 0.829 Critical W (P = 0.01) (n = 9) = 0.764

.....

Data PASS normality test at P=0.01 level. Continue analysis.

8505-093-124-032 root length test

File: a:\124.32r

Transform: NO TRANSFORMATION

Bartletts test for homogeneity of variance

.....

Calculated B statistic = 2.65

Table Chi-square value = 9.21 (alpha = 0.01)

Table Chi-square value = 5.99 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 2.00

Used for Chi-square table value ==> df (#groups-1) = 2

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

DAP 8/27/93 AE 8/31/93

8505-093-124-032 root length test

File: a:\124.32r Transform: NO TRANSFORMATION

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN
1	control	3	25.200	-32.600	28.900
2	6.25	3	27.400	29.600	28.633
3	12.5	3	20.700	29.200	26.200

8505-093-124-032 root length test

File: a:\124.32r Transform: NO TRANSFORMATION

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

GRP IDE	ENTIFICATION	VARIANCE	SD	SEM
1	control	13.690	3.700	2.136
2	6.25	1.263	1.124	0.649
3	12.5	22.750	4.770	2.754

8505-093-124-032 root length test

File: a:\124.32r Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	ss	MS	F
Between	2	13.282	6.641	0.528
Within (Error)	6	75.407	12.568	
Total	8	88.689	•	••••••••••

Critical F value = 5.14 (0.05,2,6)

Since F < Critical F FAIL TO REJECT Ho:All groups equal

8505-093-124-032 root length test

File: a:\124.32r Transform: NO TRANSFORMATION

	DUNNETTS TEST - TA	BLE 1 OF 2	Ho:Control <tr< th=""><th></th><th></th></tr<>		
		TRANSFORMED	MEAN CALCULATED IN	•••••	
GROUP	IDENTIFICATION	MEAN	ORIGINAL UNITS	T STAT	SIG
	• • • • • • • • • • • • • • • • • • • •		••••••	•••••	
1	control	28.900	28.900		

15 oF 15 DAP 8/27/93 AE 8/31/93

0.092 6.25 28.633 28.633 12.5 26.200 26.200 0.933

Dunnett table value = 2.34 (1 Tailed Value, P=0.05, df=6,2)

8505-093-124-032 root length test

File: a:\124.32r Transform: NO TRANSFORMATION

		DUNNETTS TEST	•	TABLE 2 OF	2 но:	Control <	reatment	
1	GROUP	IDENTIFICA	TION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL	
	1		contro	1 3				
	2		6.2	5 3	6.773	23.4	0.267	
	3		12.	5 3	6.773	23.4	2.700	

APPENDIX D EARTHWORM SURVIVAL TEST DATA

EARTHWORM SURVIVAL

FCETL QA Form No. 075

Effective 10/91

					Control of the Contro		Page	Lof	2
Client: Ratec/BN				Project Nu	umber: \$ 505	-073-124	Sample Number: LTFA	-LTFE	1
Date Received: 6/7/73			ENSR Nu	mber: 4842 -	-4846 ²	No. per Replicate: 5			
Date Tes	t Initiated:	6/2	29/93	Time Initia	nted: 170	0	Techs: <i>D</i> 10 5 ρ		
Date Tes	t Termina	ted: 7	13/93	Time Term	ninated: /う		<i>,</i>		Ĭ
Total Initi	al Worm	Wt./No.	of Worms We	eighed: 3.1	049/10	Species:	Eisenia Foetic	da	1
Sample Type ¹	Conc.	Rep.	No. of Surviving Worms	Total Wt. per Rep. (g)	Mean Wt. per Worm (g)	pH Init/Final	Comments .	Inits.	
1,10	0	A	5	1.36	0.27	6.8/7:7	Cacos addred 15ml/200g Soil		27°
		B	5	1.24	0.25				28°(
		C	5	1.29	0.26				Tero
6025	6.25	A	5	1.41	0.28				I
		B	5	1.07	0.21				
		C	5	1.40	0.28				1
	12.5	A	5	1.41	0.28				
		B	5	1.42	0.28				I
		<u></u>	5	1.31	0.26				ĺ
	25	A	4	1.30	0.32				
		B	i	0.33	0.33				
		<u></u>	2	0.42	0.21				
	50	A	0						
		B	2	0.48	0.24				
		C	0	_	_				
	100	A	0			8.3/8,1	Temperas measured at		27°c
		B	0	_	_		worein soil For allow Clifella Lwams in		In
		C	O	_	_		greatly remaded.		27°C Term
							0		lerm

¹ E.g., Sample (S), Positive Control (PC), Negative Control (NC)

DAP 3

^{2 (}on bin od 5 samples

2 of 5 DAP \$127193 AE 8/31/93

RESULTS CALCULATED USING THE BINOMINAL METHOD

				• • • • • • • • • • • • • • • • • • • •		
CONC.	NUMBER	NUMBER	PERCENT	BINOMIAL		
	EXPOSED	DEAD	DEAD	PROB. (PERCENT)		
••••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		
100	15	15	100.00	0.0031		
50	15	13	86.67	0.3693		
25	15	8	53.33	50.0000		
12.5	15	0	0.00	0.0031		
6.25	15	0	0.00	0.0031		

THE BINOMIAL TEST SHOWS THAT 12.5 AND 50 CAN BE USED AS STATISTICALLY SOUND CONSERVATIVE 95 PERCENT CONFIDENCE LIMITS BECAUSE THE ACTUAL CONFIDENCE LEVEL ASSOCIATED WITH THESE LIMITS IS GREATER THAN 95 PERCENT

AN APPROXIMATE LC50 OF 24.22583 IS OBTAINED BY NONLINEAR INTERPOLATION BETWEEN 12.5 AND 25

RESULTS CALCULATED USING THE MOVING AVERAGE METHOD

SPAN	G	LC50	95 PERCENT CON	FIDENCE LIMITS
4	0.071	28.466	22.239	37.172
3	0.071	28.466	22.386	35.013
2	0.115	26.863	21.809	33.708

AN LC50 CALCULATED USING THE MOVING AVERAGE METHOD MAY NOT BE A VERY GOOD ESTIMATE IF THE SPAN IS MUCH LESS THAN THE NUMBER OF CONCENTRATIONS.

RESULTS CALCULATED USING THE PROBIT METHOD

	ITERATIONS G			GOODNESS OF FIT
	G	Н	CHI-SQUARE	PROBABILITY
5	0.183	1.000	1.867	0.600

SLOPE = 5.239575

95 PERCENT CONFIDENCE LIMITS = 3.000567 AND 7.478582

LC50 = (27.29226)

95 PERCENT CONFIDENCE LIMITS = 21.68397 AND 34.34245

LC1 = 9.818682

95 PERCENT CONFIDENCE LIMITS = 4.365329 AND 13.98314

COMPARE RESULTS WITH ORIGINAL DATA TO SEE IF THEY ARE REASONABLE.

SURVIVAL

8505-093-124

File: a:\124ew Transform: ARC SINE(SQUARE ROOT(Y))

3 of 5 DAP 8/27/93 AE 8/31/93

Shapiro Wilks test for normality

D = 0.354

W = 0.753

Critical W (P = 0.05) (n = 18) = 0.897Critical W (P = 0.01) (n = 18) = 0.858

Data FAIL normality test. Try another transformation.

Warning - The two homogeneity tests are sensitive to non-normal data and should not be performed.

8505-093-124

Transform: ARC SINE(SQUARE ROOT(Y)) File: a:\124ew

Hartley test for homogeneity of variance Bartletts test for homogeneity of variance

These two tests can not be performed because at least one group has zero variance.

Data FAIL to meet homogeneity of variance assumption. Additional transformations are useless.

8505-093-124

File: a:\124ew Transform: ARC SINE(SQUARE ROOT(Y))

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 1 of 2

GRP	IDENTIFICATION	N	MIN	MAX	MEAN	
1	control	3	1.345	1.345	1.345	
2	6.25	3	1.345	1.345	1.345	
3	12.5	3	1.345	1.345	1.345	
4	25	3	0.464	1.107	0.752	
5	50	3	0.226	0.685	0.379	
6	100	3	0.226	0.226	0.226	

4 of 5

File: a:\124ew Transform: ARC SINE(SQUARE ROOT(Y))

OAP 8/27/93 AE 8/31/93

SUMMARY STATISTICS ON TRANSFORMED DATA TABLE 2 of 2

GRP	IDENTIFICATION	VARIANCE	SD	SEM
1	control	0.000	0.000	0.000
2	6.25	0.000	0.000	0.000
4	12.5 25	0.000 0.107	0.000 0.327	0.000 0.189
5	50	0.070	0.265	0.153
6	100	0.000	0.000	0.000

8505-093-124

File: a:\124ew Transform: ARC SINE(SQUARE ROOT(Y))

ANOVA TABLE

SOURCE	DF	ss	MS	F
Between	5	4.031	0.806	26.867
Within (Error)	12	0.354	0.030	
Total	17	4.385		

Critical F value = 3.11 (0.05,5,12)

Since F > Critical F REJECT Ho: All groups equal

8505-093-124

File: a:\124ew Transform: ARC SINE(SQUARE ROOT(Y))

	DUNNETTS TEST - T	TABLE 1 OF 2	Ho: Control <treatment< th=""></treatment<>			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT SIG		
1	control	1.345	1.000	Company of the Compan		
2	6.25	1.345	1.000	0.000		
3	12.5	1.345	1.000	0.000		
4	25	0.752	0.467	4.196 *		
5	50	0.379	0.133	6.836 *		
6	100	0.226	0.000	7.918 *		
Dunnet	tt table value = 2.50) (1 Tailed	Value, P=0.05, df=12,	5)		

8505-093-124

File: a:\124ew Transform: ARC SINE(SQUARE ROOT(Y))

Ho: Control<Treatment DUNNETTS TEST - TABLE 2 OF 2

5 015

GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	control	3			
2	6.25	3	0.249	24.9	0.000
3	12.5	3	0.249	24.9	0.000
4	25	3	0.249	24.9	0.533
5	50	3	0.249	24.9	0.867
6	100	3	0.249	24.9	1.000

AE 8/31/93

APPENDIX E ANALYTICAL CHEMISTRY

REPORT OF ANALYTICAL RESULTS

Client: ReTec

Cliens Sample Number: LTF-1
Date of Sample Receipt: 06/07/93
Date of Sample Extraction: 06/08/93
Date of Sample Analysis: 06/15/93

Alden Project Number: 9306016/1

Alden Sample Number: 4001 Analysis Method: EPA 8270

Matrix: Soil

Reporting Units: ug/kg

Compound Name	CAS No.	Reporting Limits(RL)	Reporting Results
Naphthalene	91-20-3	19000	29000
2-Methyinaphthalene	91-57-6	19000	33000
Acenaphthylene	208-96-8	38	1900
Accomplishence	83-32-9	19000	89000
Dibenzofuran	132-64-9	19000	57000
Fluorene	86-73-7	19000	74000
Phenanthrene	85-01-8	19000	220000
Anthracene	120-12-7	19000	32000
Fluoranthene	206-44-0	19000	100000
Pyrens	129-00-0	19000	67000
Benzo(a)Anthracene	56-55-3	19000	16000°
Chrysene	218-01-9	19000	17000*
Benzo(b)Fluoranthene	205-99-2	77	7400
Benzo(k)Fluoranthene	207-08-9	77	5400
Benzo(a)Pyrene	50-32-8	77	5400
Indeno(1,2,3-cd)Pyrene	193-39-5	77	1500
Dibenz(s,h)Anthracene	53-70-3	77	510
Benzo(g,b,i)Perylene	191-24-2	77	1000

Surrogales	Amount Added	Percent Recovery	Recovery Limits
d5-Nitrobenzene	100 ug	65	23-120
2-Fluorobiphenyl	100 ug	100	30-115
d14-Terphenyl	100 ug	92	18-137

TOTAL PAH = 559.T

LTF-1 =) composite of 5 sub-samples, Non-2000er, selected, @ 20-6"

^{*} Value is below established reporting limits but is reported as an estimate due to a positive spectral match.

AE 8/31/93

ANALYTICAL RESOURCES INCORPORATED

Analytical Chemists & Consultants

333 Ninth Ave. North Seattle, WA 98109-5187 (206) 621-6490 (206) 621-7523 (FAX)

Final Report

Laboratory Analysis of Selected Parameters

Data Kelensu Authorized: Report Prepared 06/29/93 DWN

Project No: 9306016/1/3-0011 QC Report No: RETEC - E053 Date Roceived: 06/09/93

			DATE OF ANALYSIS								
Sample L	Data:	6/18/93 6/11/93		06/11/93	06/11/93	06/11/93		06/16/93	06/23/93	06/12/93	
7	Method	EPA 160.3	EPA 350.1	EPA 354.1	EPA 353.2		EPA 351.4	EPA 413.1	EPA 365.2	EPA 365.2	
	Number	SM 2540 B	SM 4500-NH3 H	SM 4500-NO2 B	SM 4500-NO3 F	CALCULATED	SM 4500-Norg	SM 5520 B	SM 4500-P	SM 4500-P	
		TOTAL SOLIDS		NO2-N	NO24NO3-N	NO3-N	TKN		TOTALP		
Lab ID	Sample Number	(%)	(mg-N/kg)	(mg-N/kg)	(mg-N/kg)	(mg-N/kg)	(mg-N/kg)	(mg/kg)	(mg-P/kg)	(mg-P/kg)	
B053 A	4001 A-C	86.46%	0.51	0.11	0.13	<0.11	184	2,290	685	0.38	

Method Blank Analysis:

DIANA PUNNYOU.	TOTAL SOLIDS	NH3-N (me-N/I)	NO2-N (mg-N/I)	NO2+NO3-N (mg-N/I)	NO3-N (mg-N/I)	TKN (mg-N/I)	FOG (mg/L)	TOTALP (mgP/L)	ORTHO-P (mg-P/L)
Methcul Blank 1	<1.0	0.045	< 0.010	0.052	•	<0.1	1.1	<0.016	0.004
Detection Limits	1.0	0.010	0.010	0.010	•	0.1	<1.0	0.016	0.004

	(%)	(mpN/I)	(mg-N/I)	(mg-N/I)	(mg-N/I)	(mg-N/I)	(mg/L)	(mg-P/L)	(mg-P/L)
Mensured Value	•	10.1	9.70	8.96		10.3	58.5	0,060	0.042
"I'rue" Value	•	10.0	10.0	10.0	•	10.0	62.3	0.090	0.040
% Recovery		101%	97.0%	89.6%		103%	93.9%	100%	105%

Duplic

HALYSIEI	(%)	(mg-N/kg)	(mg-N/kg)	(me-N/kg)	(mg-N/kg)	(mg-N/kg)	(mg/kg)	(mg-P/kg)	(mg-P/kg)
Sample ID	E053 A	EOS3 A	EOS3 A	E053 A	•	E083 A	E053 A	EOE3 A	
Original	86.46%	0.51	0.11	0.13		184	2,290	685	•
Duplicate	86.33%	0.46	<0.11	0.11		189	1,850	683	•
RPD	0.15%	10.31%		16.67%		2.68%	21.3%	0.59%	•

Duplicate Analysis

	(%)	(mg-N/kg)	(mg-N/kg)	(mg-N/kg)	(mg-N/kg)	(mg-N/kg)	(mg/kg)	(mg-P/kg)	(mg-P/kg)
Sample ID	•	E093 A	E053 A	E053 A		EOSS A	EOS3 A	EOSS A	•
Original		0.51	0.11	0.13	•	184	2,290	688	•
Spike	•	107	114	109		1,876	22,000	841	•
Spile Amount		116	116	116	•	2,230	20,600	60.9	•
% Recovery	•	91.8%	98.2%	93.9%	•	75.9%	95.7%	256%	•

nets: Values are reported on dry weight basis.

Oil and Grosse determined by partition gravimetric technique with soxhict extraction.

Ammonia & Nitrate determined on 2M KCl extracts.

Ortho-P determined on 1:10 aqueous extract.

Total P spike masked by high sample background concentration.

Turked Newtwenth Enter Competition